5 years ago

2D Organic Superlattice Promoted via Combined Action of π–π Stacking and Dipole–Dipole Interaction in Discotic Liquid Crystals

2D Organic Superlattice Promoted via Combined Action of π–π Stacking and Dipole–Dipole Interaction in Discotic Liquid Crystals
Zhenhu Zhang, Jialing Pu, Ao Zhang, Shuaifeng Zhang, Wanying Zhang, Xingtian Hao, Huanzhi Yang, Jianchuang Wang, Chunxiu Zhang
A series of discotic liquid crystals based on hexapentyloxytriphenylene (HAT5) have been investigated where one out of the six ether side chains of a triphenylene core was replaced by an ester side chain and named for 5a5h. During the process of studying these compounds, the characteristic straight line defect of ordered columnar structure was identified by polarizing optical microscopy (POM) and liquid crystal state over a wide temperature range was obtained by differential scanning calorimetry (DSC). Basic phase structure and molecular arrangement were assigned by one-dimensional wide-angle X-ray diffraction (1D WAXD), small-angle X-ray scattering (SAXS), two-dimensional wide-angle X-ray diffraction (2D WAXD), and transmission electron microscope (TEM). Combined with sharp and regular dots in 2D WAXD patterns and characteristic peaks at small angle in SAXS pattern which indicated the existence of superlattice, we proved that 2D superlattice formed from self-assembly of discotic molecules with a polar group via π–π stacking and dipole–dipole interaction. In order to verify the effect of orientation on charge carrier mobility, their electron and hole mobilities were measured by time-of-flight (TOF) device, among which the charge carrier mobility could achieve almost twice as that of HAT5. The formation of superlattice no doubt improved their electronic properties and made them more attractive in organic electronics.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b05465

DOI: 10.1021/acs.jpcb.7b05465

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.