4 years ago

Substrate Binding Primes Human Tryptophan 2,3-Dioxygenase for Ligand Binding

Substrate Binding Primes Human Tryptophan 2,3-Dioxygenase for Ligand Binding
Karin Nienhaus, G. Ulrich Nienhaus, Vincent Hahn, Manuel Hüpfel
The human heme enzyme tryptophan 2,3-dioxygenase (hTDO) catalyzes the insertion of dioxygen into its cognate substrate, l-tryptophan (l-Trp). Its active site structure is highly dynamic, and the mechanism of enzyme–substrate–ligand complex formation and the ensuing enzymatic reaction is not yet understood. Here we have studied complex formation in hTDO by using time-resolved optical and infrared spectroscopy with carbon monoxide (CO) as a ligand. We have observed that both substrate-free and substrate-bound hTDO coexist in two discrete conformations with greatly different ligand binding rates. In the fast rebinding hTDO conformation, there is facile ligand access to the heme iron, but it is greatly hindered in the slowly rebinding conformation. Spectroscopic evidence implicates active site solvation as playing a crucial role for the observed kinetic differences. Substrate binding shifts the conformational equilibrium markedly toward the fast species and thus primes the active site for subsequent ligand binding, ensuring that formation of the ternary complex occurs predominantly by first binding l-Trp and then the ligand. Consequently, the efficiency of catalysis is enhanced because O2 binding prior to substrate binding, resulting in nonproductive oxidation of the heme iron, is greatly suppressed.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b03463

DOI: 10.1021/acs.jpcb.7b03463

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.