4 years ago

Cloaking of Thermoelectric Transport

Lilia M. Woods, Troy Stedman
The ability to control electromagnetic fields, heat currents, electric currents, and other physical phenomena by coordinate transformation methods has resulted in novel functionalities, such as cloaking, field rotations, and concentration effects. Transformation optics, as the underlying mathematical tool, has proven to be a versatile approach to achieve such unusual outcomes relying on materials with highly anisotropic and inhomogeneous properties. Most applications and designs thus far have been limited to functionalities within a single physical domain. Here we present transformation optics applied to thermoelectric phenomena, where thermal and electric flows are coupled via the Seebeck coefficient. Using laminates, we describe a thermoelectric cloak capable of hiding objects from thermoelectric flow. Our calculations show that such a cloak does not depend on the particular boundary conditions and can also operate in different single domain regimes. These proof-of-principle results constitute a significant step forward towards finding unexplored ways to control and manipulate coupled transport.

Publisher URL: https://www.nature.com/articles/s41598-017-05593-6

DOI: 10.1038/s41598-017-05593-6

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.