5 years ago

Hyperbolic-polaritons-enabled dark-field lens for sensitive detection

Zhiwei Xu, Rujiang Li, Huaping Wang, Hongsheng Chen, Lian Shen
Sensitive detection of features in a nanostructure may sometimes be puzzled in the presence of significant background noise. In this regard, background suppression and super-resolution are substantively important for detecting weakly scattering nanoscale features. Here, we present a lens design, termed hyperbolic-polaritons-enabled dark-field lens (HPEDL), which has the ability to accomplish straightforward sensitive detection. This HPEDL structure consists of type I and type II hyperbolic media that support high-k field waves via hyperbolic polaritons (HPs). We show that the cone-like characteristics of the HPs could be manipulated while the influence of the low-k field waves would be removed. Numerical simulations demonstrate that this proposed structure can successfully realize straightforward sensitive detection by modifying its thickness under the phase compensation condition. Besides, the minimum resolvable length and angular-dependent performance for sensitive detection are also demonstrated by simulations. Remarkably, these findings are very promising for propelling nanophotonics technologies and constitute a further important step towards practical applications of optical microscopy.

Publisher URL: https://www.nature.com/articles/s41598-017-07576-z

DOI: 10.1038/s41598-017-07576-z

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.