3 years ago

RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding

RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding
Alice Wenger, Marc Bühler, Sarah H Carl, Philip Knuckles, Christof Niehrs, Michael Musheev
Eukaryotic gene expression is heavily regulated at the transcriptional and post-transcriptional levels. An additional layer of regulation occurs co-transcriptionally through processing and decay of nascent transcripts physically associated with chromatin. This process involves RNA interference (RNAi) machinery and is well documented in yeast, but little is known about its conservation in mammals. Here we show that Dgcr8 and Drosha physically associate with chromatin in murine embryonic stem cells (mES), specifically with a subset of transcribed coding and noncoding genes. Dgcr8 recruitment to chromatin is dependent on transcription as well as methyltransferase-like 3 (Mettl3), which catalyzes RNA N6-methyladenosine (m6A). Intriguingly, we found that acute temperature stress causes radical relocalization of Dgcr8 and Mettl3 to heat-shock genes, where they act to co-transcriptionally mark mRNAs for subsequent RNA degradation. Together, our findings elucidate a novel mode of co-transcriptional gene regulation, in which m6A serves as a chemical mark that instigates subsequent post-transcriptional RNA-processing events.

Publisher URL: http://dx.doi.org/10.1038/nsmb.3419

DOI: 10.1038/nsmb.3419

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.