3 years ago

Graphene/Group 5 Transition Metal Dichalcogenide Composites for Electrochemical Applications

Graphene/Group 5 Transition Metal Dichalcogenide Composites for Electrochemical Applications
Jan Luxa, Zdeněk Sofer, Xinyi Chia, Yong Wang, Martin Pumera
In comparison to the extensive research and great success attained by Group 6 transition metal dichalcogenides (TMDs) as hydrogen evolution reaction (HER) electrocatalysts, there is limited research focused on metallic Group 5 TMDs for use as electrocatalysts for hydrogen evolution. Density functional theory calculations have pointed out that Group 5 TMDs are highly favorable for HER, especially vanadium disulfide. In this work, nanocomposites of graphene and Group 5 TMDs were synthesized by thermal exfoliation of graphene oxide/TMD precursors in an H2S atmosphere or in a H2 atmosphere as a control. Graphene oxide was prepared by the Hummers method while vanadium tetrachloride, niobium pentachloride, and tantalum pentachloride were utilized as TMD precursors. Then the potential of these nanocomposites as electrocatalysts towards HER was explored. Although these nanocomposites do not have comparable HER performance to Group 6 TMDs, they exhibit higher electrocatalytic activity in comparison with thermally reduced graphene oxide (TRGO) in the absence of TMD modification. In addition, the capacitive performance of these materials was also investigated in consideration of the high capacitance of graphene. It was indicated that the presence of TMDs on graphene actually suppress the capacitance performance of graphene itself. Hybrid catalysts: Group 5 transition metal dichalcogenides, namely VS2, NbS2, TaS2, and graphene nanocomposites were prepared and their electrocatalytic viability for the hydrogen evolution reaction was investigated.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201701843

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.