3 years ago

Functional Implications Of Disordered Terminal Regions Of Macrotyloma uniflorum Bowman-Birk Inhibitors: A Molecular Dynamics Study

Acharya, A.
Bowman-Birk Inhibitors (BBI): a class of serine protease inhibitors is of considerable interest due to their anti-inflammatory and anti-carcinogenic properties. Recent efforts have focused on understanding the structure and dynamics of these inhibitors, and the molecular mechanism behind its bioactive properties. BBI derived from Horsegram seeds is an interesting member of the class that exists as a number of isoforms that differ in length at the C- and N-terminal disordered regions. Interestingly, the length (or conversely, truncation) of the terminal regions affect whether the protein exists as a dimer or monomer. Here, we have investigated the mechanism of dimerization in Horsegram BBI. A recent study has proposed that the dimerization occur via a C-terminal hook that forms a salt bridge with the opposite monomer and is pivotal to the dimerization process. We have employed long computational simulation methods to predict the stability of the proposed C-terminal hook; we show that the terminal regions are highly disordered and the salt bridges are significantly solvent exposed. Further, using Hamiltonian replica exchange method, we have sought to obtain the conformational ensemble of the disordered terminal regions and have identified a conformational state that provides an interaction hot-spot that aids in the dimerization of HGI. Our analysis predicts an alternate model of dimerization that largely agrees with previous experimental studies and yet again, highlights the importance of intrinsically disordered region in tailoring the protein function.

Publisher URL: http://biorxiv.org/cgi/content/short/125807v1

DOI: 10.1101/125807

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.