3 years ago

OGT binds a conserved C-terminal domain of TET1 to regulate TET1 activity and function in development

B., Hrit, Li, E. A., Goll, M., Martin, Panning, C., J.
Mammalian TET enzymes oxidize 5-methylcytosine to 5-hydroxymethylcytosine and higher oxidized derivatives. TETs are targets of the enzyme OGT, which post-translationally modifies intracellular proteins in response to cellular nutrient status. The biological implications of the OGT-TET interaction have not been thoroughly explored. Here, we show for the first time that modification of TET1 by OGT enhances its activity in vitro. We identify a previously uncharacterized domain of TET1 responsible for binding to OGT and report a point mutation that disrupts the OGT-TET1 interaction. Finally, we show that the interaction between TET1 and OGT is necessary for TET1 to rescue tet mutant zebrafish hematopoetic stem cell formation, suggesting that OGT promotes TET1s function in development. Our results demonstrate regulation of TET activity by OGT in vitro and in vivo. These results link metabolism and epigenetic control, which may be relevant to the developmental and disease processes regulated by these two enzymes.

Publisher URL: http://biorxiv.org/cgi/content/short/125419v1

DOI: 10.1101/125419

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.