5 years ago

Design and Synthesis of Cyclic Mismatch-Binding Ligands (CMBLs) with Variable Linkers by Ring-Closing Metathesis and their Photophysical and DNA Repeat Binding Properties

Design and Synthesis of Cyclic Mismatch-Binding Ligands (CMBLs) with Variable Linkers by Ring-Closing Metathesis and their Photophysical and DNA Repeat Binding Properties
Chikara Dohno, Sanjukta Mukherjee, Kazuhiko Nakatani
Cyclophane-containing bis(2-amino-1,8-naphthyridine) moieties attached to variable linkers at the C2-position (linker B) were synthesized as cyclic mismatch-binding ligands (CMBLs). Ring-closing metathesis (RCM) is used as a key step for the introduction of double bonds at the linker B. Decreasing the size of the linker of the substrate, formation of the RCM products with an increasing trans/cis (E/Z) ratio was observed with moderate to high overall yields. Concentration-dependent fluorescence spectra were observed for CMBLs with longer linkers (n=3), whereas concentration-independent spectra were observed for CMBLs with shorter linkers (n=2 and/or 1) with a marked exception of the E-alkene 6 a. Concomitant changes in the absorption as well as in the fluorescence spectra were also observed for the CMBLs with an increasing hydrophobicity of the solvent. Absorption and fluorescence spectra of the CMBLs in solutions containing 99–100 % methanol resembled to that of the monomer. The binding behavior of these CMBLs with repeat DNA structures was investigated by using a surface plasmon resonance (SPR) assay and circular dichroism (CD) spectra. The cyclic E-alkenes 1 a (n=3) and 3 a (n=2) show an orthogonal binding relationship with d(CCTG)9 and d(CAG)9. However, the selectivity for the cyclic Z-alkenes increased with decreasing the length of the linker from compound 2 b (n=3) to compound 7 b (n=1). These compounds display a large molecular diversity, which allowed the tuning of the binding affinity and selectivity of the CMBLs by varying the linkers towards various biologically significant repeat DNA structures. It depends on the ring: A library of CMBLs was synthesized by using ring-closing metathesis (RCM) through variation of the nature of linker B (see scheme). The new compounds were characterized and there photophysical properties as well as their binding properties to biologically relevant DNA repeat sequences were investigated.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201702064

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.