3 years ago

Ordered mesoporous N-doped carbon supported Ru for selective adsorption and hydrogenation of quinoline

Ordered mesoporous N-doped carbon supported Ru for selective adsorption and hydrogenation of quinoline
Ordered mesoporous N-doped carbon (OMNC) is prepared via a facile nanocasting approach using ethylenediamine (EDA) and carbon tetrachloride (CTC) as precursors, for which the pore structure, N-dopants and basicity are strongly dependent on the pyrolysis temperature (500–800 °C). After supporting 2.5% Ru by incipient wetness impregnation, the imitate interaction of N-dopants with Ru has a strong influence on the activity and selectivity of quinoline hydrogenation, as disclosed by XPS and H2-TPR studies. It is found that Ru/OMNC-700 obtained at 700 °C shows superior substrate adsorption and catalytic activity under mild conditions (40 °C and 1 MPa H2). The turnover frequency (TOF) and activation energy of Ru/OMNC-700 for the hydrogenation of quinoline are 71.0 h−1 and 31.37 kJ/mol. In particular, this catalyst retains 98.3% of the initial catalytic activity after 5 recycles and shows high compatibility with various N-heterocycles with good conversion and high selectivity, attributed to the strong electron donation from OMNC-700 to Ru and the enhanced adsorption of pyridine ring with high selectivity over OMNC-700. This strategy for the preparation of the supported Ru catalysts opens a new possibility of designing highly efficient heterogeneous catalysts in the future.

Publisher URL: www.sciencedirect.com/science

DOI: S1387181117305206

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.