3 years ago

Co,N-codoped graphene as efficient electrocatalyst for hydrogen evolution reaction: Insight into the active centre

Co,N-codoped graphene as efficient electrocatalyst for hydrogen evolution reaction: Insight into the active centre
Co and N co-doped carbon (CNC) material is one of the most promising precious-metal-free catalyst for hydrogen evolution reaction (HER), however, widespread application of CNC will require continuous innovation and optimization of fabrication to maximize electrocatalytic performance, which is always a challenge. Herein, two types of three-dimensional (3D) graphene materials synthesized by one-step of simultaneous doping (Co,N/3DG-1) and two-step of sequential doping (Co,N/3DG-2) respectively, are evaluated and correlated their electrocatalytic activity for HER with experimental parameters. The results indicate that Co,N/3DG-2 exhibits significantly better electrocatalytic activity than Co,N/3DG-1. The structure analysis reveals that Co,N/3DG-2 has more moderate Co-N coordinated number than Co,N/3DG-1. Density functional theory calculations unravels that the equilibrium C and N around Co atom is more favorable to the adsorption and desorption of hydrogen. The results shed new light on the rational design of dual hetero-atom co-doped carbon materials, which may be applicable to other energy conversion and storage systems.

Publisher URL: www.sciencedirect.com/science

DOI: S0378775317310133

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.