3 years ago

Postsynthetic Doping of MnCl2 Molecules into Preformed CsPbBr3 Perovskite Nanocrystals via a Halide Exchange-Driven Cation Exchange

Postsynthetic Doping of MnCl2 Molecules into Preformed CsPbBr3 Perovskite Nanocrystals via a Halide Exchange-Driven Cation Exchange
Shenfei Zong, Guangguang Huang, Yiping Cui, Chunlei Wang, Changgui Lu, Ju Lu, Zhuyuan Wang, Shuhong Xu
Unlike widely used postsynthetic halide exchange for CsPbX3 (X is halide) perovskite nanocrystals (NCs), cation exchange of Pb is of a great challenge due to the rigid nature of the Pb cationic sublattice. Actually, cation exchange has more potential for rendering NCs with peculiar properties. Herein, a novel halide exchange-driven cation exchange (HEDCE) strategy is developed to prepare dually emitting Mn-doped CsPb(Cl/Br)3 NCs via postsynthetic replacement of partial Pb in preformed perovskite NCs. The basic idea for HEDCE is that the partial cation exchange of Pb by Mn has a large probability to occur as a concomitant result for opening the rigid halide octahedron structure around Pb during halide exchange. Compared to traditional ionic exchange, HEDCE is featured by proceeding of halide exchange and cation exchange at the same time and lattice site. The time and space requirements make only MnCl2 molecules (rather than mixture of Mn and Cl ions) capable of doping into perovskite NCs. This special molecular doping nature results in a series of unusual phenomenon, including long reaction time, core–shell structured mid states with triple emission bands, and dopant molecules composition-dependent doping process. As-prepared dual-emitting Mn-doped CsPb(Cl/Br)3 NCs are available for ratiometric temperature sensing. A novel halide exchange-driven cation exchange strategy is developed to prepare dually emitting Mn-doped CsPb(Cl/Br)3 nanocrystals (NCs). The key is the simultaneous reactions of halide exchange and cation exchange at the same time and lattice site, which can be satisfied only by direct doping of MnCl2 molecules into NCs.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201700095

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.