3 years ago

Piezo-Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis–NIR Broadband Photodiode

Piezo-Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis–NIR Broadband Photodiode
Wenbo Ding, Xiaogan Li, Yunlong Zi, Fei Hu, Wenbo Peng, Zhong Lin Wang, Ruiyuan Liu, Changsheng Wu, Ruomeng Yu, Wenzhuo Wu, Haiyang Zou
Silicon underpins nearly all microelectronics today and will continue to do so for some decades to come. However, for silicon photonics, the indirect band gap of silicon and lack of adjustability severely limit its use in applications such as broadband photodiodes. Here, a high-performance p-Si/n-ZnO broadband photodiode working in a wide wavelength range from visible to near-infrared light with high sensitivity, fast response, and good stability is reported. The absorption of near-infrared wavelength light is significantly enhanced due to the nanostructured/textured top surface. The general performance of the broadband photodiodes can be further improved by the piezo-phototronic effect. The enhancement of responsivity can reach a maximum of 78% to 442 nm illumination, the linearity and saturation limit to 1060 nm light are also significantly increased by applying external strains. The photodiode is illuminated with different wavelength lights to selectively choose the photogenerated charge carriers (either electrons or holes) passing through the depletion region, to investigate the piezo-phototronic effect on electron or hole transport separately for the first time. This is essential for studying the basic principles in order to develop a full understanding about piezotronics and it also enables the development of the better performance of optoelectronics. A high-performance p-Si/n-ZnO broadband photodiode is fabricated, working in a wide wavelength range from visible to near-infrared light. The photodiode is illuminated with different wavelengths to selectively choose the photogenerated charge carriers (either electrons or holes) passing through the depletion region. This enables the possibility to investigate the piezo-phototronic effect on performance in two cases separately for the first time.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201701412

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.