3 years ago

Role of Ordered Ni Atoms in Li Layers for Li-Rich Layered Cathode Materials

Role of Ordered Ni Atoms in Li Layers for Li-Rich Layered Cathode Materials
Yoon Sung Nam, Jang Wook Choi, Woosuk Cho, Kyungsu Kim, Sangryun Kim, Moon Young Yang
Li-rich layered oxide materials are promising candidates for high-energy Li-ion batteries. They show high capacities of over 200 mAh g−1 with the additional occupation of Li in their transition metal layers; however, the poor cycle performance induced by an irreversible phase transition limits their use in practical applications. In recent work, an atomic-scale modified surface, in which Ni is ordered at 2c sites in the Li layers, significantly improves the performance in terms of reversible capacity and cycling stability. The role of the incorporated Ni on this performance, however, is not yet clearly understood. Here, the effects of the ordered Ni on Li battery performance are presented, based on first-principles calculations and experimental observations. The Ni substitution suppresses the oxygen loss by moderating the oxidation of oxygen ions during the delithiation process and forms bonds with adjacent oxygen after the first deintercalation of Li ions. These NiO bonds contribute to the formation of a solid surface, resulting in the improved cycling stability. Moreover, the multivalent Ni suppresses Mn migration to the Li-sites that causes the undesired phase transition. These findings from theoretical calculations and experimental observations provide insights to enhance the electrochemical performance of Li-rich layered oxides. The regularly ordered Ni substitution in the Li-rich layered oxide significantly improves the battery performance in terms of reversible capacity and cycling stability. The combinatorial study using first-principles calculations and experiments reveals that Ni substitution effectively suppresses the oxygen loss and cation mixing that induces the undesired phase transition for the Li-rich layered cathode materials.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201700982

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.