5 years ago

Synthesis of Aryl C-Glycosides via Iron-Catalyzed Cross Coupling of Halosugars: Stereoselective Anomeric Arylation of Glycosyl Radicals

Synthesis of Aryl C-Glycosides via Iron-Catalyzed Cross Coupling of Halosugars: Stereoselective Anomeric Arylation of Glycosyl Radicals
Gabriel Toma, Ho C. Li, Toshio Takenaka, Shintaro Kawamura, Masaharu Nakamura, Tony K. M. Shing, Hikaru Takaya, Katsuhiro Isozaki, Laksmikanta Adak, Akihiro Orita
We have developed a novel diastereoselective iron-catalyzed cross-coupling reaction of various glycosyl halides with aryl metal reagents for the efficient synthesis of aryl C-glycosides, which are of significant pharmaceutical interest due to their biological activities and resistance toward metabolic degradation. A variety of aryl, heteroaryl, and vinyl metal reagents can be cross-coupled with glycosyl halides in high yields in the presence of a well-defined iron complex, composed of iron(II) chloride and a bulky bisphosphine ligand, TMS-SciOPP. The chemoselective nature of the reaction allows the use of synthetically versatile acetyl-protected glycosyl donors and the incorporation of various functional groups on the aryl moieties, producing a diverse array of aryl C-glycosides, including Canagliflozin, an inhibitor of sodium-glucose cotransporter 2 (SGLT2), and a prevailing diabetes drug. The cross-coupling reaction proceeds via generation and stereoselective trapping of glycosyl radical intermediates, representing a rare example of highly stereoselective carbon–carbon bond formation based on iron catalysis. Radical probe experiments using 3,4,6-tri-O-acetyl-2-O-allyl-α-d-glucopyranosyl bromide (8) and 6-bromo-1-hexene (10) confirm the generation and intermediacy of the corresponding glycosyl radicals. Density functional theory (DFT) calculations reveal that the observed anomeric diastereoselectivity is attributable to the relative stability of the conformers of glycosyl radical intermediates. The present cross-coupling reaction demonstrates the potential of iron-catalyzed stereo- and chemoselective carbon–carbon bond formation in the synthesis of bioactive compounds of certain structural complexity.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03867

DOI: 10.1021/jacs.7b03867

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.