5 years ago

Fluorescence Light-Up Biosensor for MicroRNA Based on the Distance-Dependent Photoinduced Electron Transfer

Fluorescence Light-Up Biosensor for MicroRNA Based on the Distance-Dependent Photoinduced Electron Transfer
Xiurong Yang, Jiahui Zhao, Shuang Wang, Shasha Lu, Jian Sun
It is demonstrated that miRNAs exhibit significant regulatory roles in a series of biological processes and associated with diverse human diseases. Herein, we report a convenient fluorescent biosensor for the quantitative determination of miR-21, a key miRNA related to cardio-cerebrovascular diseases. Our proposal involves not only the rational design of single stranded DNA as the probe, successively including a C-rich sequence as the synthetic template of DNA/Ag nanoclusters (DNA/AgNCs), a complementary (Com) sequence to hybridize with the miR-21, and a G-rich sequence to form a complex of G-quadruplex/hemin but also the distance-dependent property of photoinduced electron transfer (PET) between the preformed DNA/AgNCs (electron donor) and G-quadruplex/hemin complex (electron acceptor). In the presence of the target miR-21, the initial flexible single strand Com in the probe turns to the rigid Com/RNA heteroduplexes, and then the PET could be interrupted owing to the extended distance between the electron donor and acceptor, accompanying with the fluorescence quenching and recovery of DNA/AgNCs. Therefore, a fluorescence light-up biosensor for miR-21 could be developed through the monitoring of the degree of fluorescence recovery of DNA/AgNCs. Preferential to other previous PET-based detection methods, we construct the biosensor by utilizing the distance dependent property for the first time and only need to adjust the sequences of Com in different miRNAs assays.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01900

DOI: 10.1021/acs.analchem.7b01900

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.