5 years ago

Enhancing p-Type Thermoelectric Performances of Polycrystalline SnSe via Tuning Phase Transition Temperature

Enhancing p-Type Thermoelectric Performances of Polycrystalline SnSe via Tuning Phase Transition Temperature
Yung-Eun Sung, Sung-Pyo Cho, Taeghwan Hyeon, Chongjian Zhou, In Chung, Sang Hyun Park, Hyo Seok Kim, Sue In Chae, Joonil Cha, Kyunghan Ahn, Jae-Hyuk Park, Yong Kyu Lee, Won Bo Lee, Garam Choi
SnSe emerges as a new class of thermoelectric materials since the recent discovery of an ultrahigh thermoelectric figure of merit in its single crystals. Achieving such performance in the polycrystalline counterpart is still challenging and requires fundamental understandings of its electrical and thermal transport properties as well as structural chemistry. Here we demonstrate a new strategy of improving conversion efficiency of bulk polycrystalline SnSe thermoelectrics. We show that PbSe alloying decreases the transition temperature between Pnma and Cmcm phases and thereby can serve as a means of controlling its onset temperature. Along with 1% Na doping, delicate control of the alloying fraction markedly enhances electrical conductivity by earlier initiation of bipolar conduction while reducing lattice thermal conductivity by alloy and point defect scattering simultaneously. As a result, a remarkably high peak ZT of ∼1.2 at 773 K as well as average ZT of ∼0.5 from RT to 773 K is achieved for Na0.01(Sn1–xPbx)0.99Se. Surprisingly, spherical-aberration corrected scanning transmission electron microscopic studies reveal that NaySn1–xPbxSe (0 < x ≤ 0.2; y = 0, 0.01) alloys spontaneously form nanoscale particles with a typical size of ∼5–10 nm embedded inside the bulk matrix, rather than solid solutions as previously believed. This unexpected feature results in further reduction in their lattice thermal conductivity.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b05881

DOI: 10.1021/jacs.7b05881

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.