5 years ago

Chern Insulator and Chern Half-Metal States in the Two-Dimensional Spin-Gapless Semiconductor Mn2C6S12

Chern Insulator and Chern Half-Metal States in the Two-Dimensional Spin-Gapless Semiconductor Mn2C6S12
Mingwen Zhao, Aizhu Wang, Yuanping Feng, Xiaoming Zhang
Two-dimensional metal–organic frameworks (2D-MOFs) with exotic electronic structures are drawing increasing attention. Here, using first-principles calculations, we demonstrate a spin-gapless MOF, namely, Mn2C6S12, with the coexistence of a spin-polarized Dirac cone and parabolic degenerate points. The Curie temperature evaluated from Monte Carlo simulations implies Mn2C6S12 possessing stable ferromagnetism at room temperature. Taking the spin–orbit coupling into account, the Dirac cone is gapped and the degenerate points are lifted, giving rise to multiple topologically nontrivial states with nonzero Chern number, which imply the possibility of Mn2C6S12 to be a Chern insulator and a Chern half-metal. Our results offer versatile platforms for achieving spin filtering or a quantum anomalous Hall effect with promising application in spintronics devices.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01187

DOI: 10.1021/acs.jpclett.7b01187

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.