4 years ago

Facile functionalization of 3-D ordered KIT-6 with cuprous oxide for deep desulfurization

Facile functionalization of 3-D ordered KIT-6 with cuprous oxide for deep desulfurization
Deep desulfurization by π-complexation is an efficient technique for purification of fuels. In π-complexation adsorbents, Cu(I)-based materials are effective due to low cost and high activity. However, the deep desulfurization has been proven to strongly rely on the dispersion extent of Cu species. Herein, for the first time, we report ammonia assisted deposition precipitation one-step N2 reduction strategy to fabricate Cu2O-containing KIT-6. In such strategy, Cu(NO3)2 precursor was directly introduced into the microenvironment exist between template and silica walls of template-P123-containing KIT-6 via ammonia assisted deposition precipitation. The subsequent single step N2 reduction strategy perform three functions in a single mode i.e. decomposition of Cu precursor to CuO, template removal, and conversion of CuO to Cu(I). Our strategy is convenient and efficiently promoted the dispersion of Cu species with high yield (61.84%) of Cu(I). We also demonstrated that the resultant material, as-synthesized KIT-6 supported with an optimal content 20wt% of Cu, can capture 0.28mmol·g−1 thiophene, which is obviously better than its counterpart CuCK-20 synthesized via calcined KIT-6. Furthermore, the thiophene adsorption activity can be recovered well without any obvious loss. Facile synthesis, high thiophene removal, and excellent regeneration ability make Cu/KIT-6 favorable for utilization in adsorptive desulfurization technology.

Publisher URL: www.sciencedirect.com/science

DOI: S1385894717312998

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.