5 years ago

Atomic platinum layer coated titanium copper nitride supported on carbon nanotubes for the methanol oxidation reaction

Atomic platinum layer coated titanium copper nitride supported on carbon nanotubes for the methanol oxidation reaction
In this study, a novel low-Pt core-shell catalyst is successfully prepared by depositing ultrathin Pt layer on the carbon nanotubes supported titanium nitride nanoparticles (TiN@Pt/CNTs) via a facile pulse electrochemical deposition approach. The catalyst is characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), High-angle annular dark field (HAADF) and energy-dispersive spectrometer (EDS) elemental mapping, X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The results confirm the core-shell structure of the prepared TiN@Pt/CNTs catalyst. More importantly, the catalyst exhibits superb mass activity and durability for the methanol oxidation reaction (MOR) than that of the commercial JM Pt/C catalyst. Later experiments data demonstrate that the activity and stability of the catalyst can be further enhanced via copper doping, which results from the modified electronic structure of the Pt atoms and the synergistic effects of the core-shell structure.

Publisher URL: www.sciencedirect.com/science

DOI: S0013468617314834

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.