3 years ago

Correlating pore size and shape to local disorder in microporous carbon: A combined small angle neutron and X-ray scattering study

Correlating pore size and shape to local disorder in microporous carbon: A combined small angle neutron and X-ray scattering study
We present a model free analysis of the structure of a microporous carbon (Kynol fiber cloth) with neutrons (SANS) and X-rays (SAXS). SANS with contrast matching is used to analyze the accessible pores. It is shown that the SAXS- and the SANS-intensities agree after correction of the SANS specific background. Moreover, we analyze the scattering contribution due to the finite size and the bending of the carbon sheets. This contribution that scales with q −2 at high q-values (q: magnitude of scattering vector) is subtracted and the remaining intensity that exhibits a q −4 final slope gives the specific inner surface (1090 m2/g) and the porosity (29%) with excellent precision. The spatial distribution of the pores is analyzed in terms of the chord length distribution g(r). This distribution has its maximum below 1 nm and a finite intercept g(0) that indicates pores with sharp edges. The analysis gives furthermore the number and weight-average chord length. Finally, a parameter characterizing the degree of disorder of the carbonaceous structure introduced by Ruland was determined. Its value (25%) indicates a rather disordered structure that is visualized in terms of a detailed model. The entire analysis shows the power of small-angle scattering for a detailed analysis of microporous structures.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317307285

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.