3 years ago

Partial atomic multipoles for internally consistent microelectrostatic calculations

Partial atomic multipoles for internally consistent microelectrostatic calculations
Mateusz Snamina, Piotr Petelenz, Grzegorz Mazur
An extension of the extant microelectrostatic methodologies, based on the concept of distributed generalized polarizability matrix derived from the Coupled Perturbed Hartree–Fock (CPHF) equations, is proposed for self-consistent calculation of charge carrier and charge-transfer (CT) state electrostatic energies in molecular solids, including the doped, defected and disordered ones. The CPHF equations are solved only once and the generalized molecular polarizability they yield enables low cost iterations that mutually adjust the molecular electronic distributions and the local electric field in which the molecules are immersed. The approach offers a precise picture of molecular charge densities, accounting for atomic partial multipoles up to order 2, which allows one to reproduce the recently reported large charge-quadrupole contributions to CT state energies in low-symmetry local environments. It is particularly well suited for repetitive calculations for large clusters (up to 300,000 atoms), and may potentially be useful for describing electrostatic solvent effects. © 2017 Wiley Periodicals, Inc. The electrostatic energies of charge carriers and charge pairs in condensed phase environments of low local symmetry are very sensitive to the detailed shape of molecular electron density. Yet, they may be adequately reproduced when the electron distribution is represented by a set of atomic multipoles up to order 2 (and the corresponding multipolar polarizabilities), provided by ab initio methodology. This enables low cost self-consistent microelectrostatic calculations for large molecular clusters (up to 300,000 atoms).

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jcc.24903

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.