5 years ago

Solution-Processed Monolayer Organic Crystals for High-Performance Field-Effect Transistors and Ultrasensitive Gas Sensors

Solution-Processed Monolayer Organic Crystals for High-Performance Field-Effect Transistors and Ultrasensitive Gas Sensors
Paddy Kwok Leung Chan, Boyu Peng, Zhiwen Zhou, Shuyun Huang
This work innovatively develops a dual solution-shearing method utilizing the semiconductor concentration region close to the solubility limit, which successfully generates large-area and high-performance semiconductor monolayer crystals on the millimeter scale. The monolayer crystals with poly(methyl methacrylate) encapsulation show the highest mobility of 10.4 cm2 V−1 s−1 among the mobility values in the reported solution-processed semiconductor monolayers. With similar mobility to multilayer crystals, light is shed on the charge accumulation mechanism in organic field-effect transistors (OFETs), where the first layer on interface bears the most carrier transport task, and the other above layers work as carrier suppliers and encapsulations to the first layer. The monolayer crystals show a very low dependency on channel directions with a small anisotropic ratio of 1.3. The positive mobility–temperature correlation reveals a thermally activated carrier transport mode in the monolayer crystals, which is different from the band-like transport mode in multilayer crystals. Furthermore, because of the direct exposure of highly conductive channels, the monolayer crystal based OFETs can sense ammonia concentrations as low as 10 ppb. The decent sensitivity indicates the monolayer crystals are potential candidates for sensor applications. An innovative dual solution-shearing method that leads to highly crystallized organic semiconductor monolayers with mobility up to 10 cm2 V−1 s−1 is presented. The monolayers show Coulomb impurity limited mobility and hopping transport. The directly exposed transport channel allows for superior gas sensor performance.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201700999

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.