SPOt: A novel and streamlined microarray platform for observing cellular tRNA levels
by Simon Grelet, Ariel McShane, Eveline Hok, Jensen Tomberlin, Philip H. Howe, Renaud Geslain
Recent studies have placed transfer RNA (tRNA), a housekeeping molecule, in the heart of fundamental cellular processes such as embryonic development and tumor progression. Such discoveries were contingent on the concomitant development of methods able to deliver high-quality tRNA profiles. The present study describes the proof of concept obtained in Escherichia coli (E. coli) for an original tRNA analysis platform named SPOt (Streamlined Platform for Observing tRNA). This approach comprises three steps. First, E. coli cultures are spiked with radioactive orthophosphate; second, labeled total RNAs are trizol-extracted; third, RNA samples are hybridized on in-house printed microarrays and spot signals, the proxy for tRNA levels, are quantified by phosphorimaging. Features such as reproducibility and specificity were assessed using several tRNA subpopulations. Dynamic range and sensitivity were evaluated by overexpressing specific tRNA species. SPOt does not require any amplification or post-extraction labeling and can be adapted to any organism. It is modular and easily streamlined with popular techniques such as polysome fractionation to profile tRNAs interacting with ribosomes and actively engaged in translation. The biological relevance of these data is discussed in regards to codon usage, tRNA gene copy number, and position on the genome.Publisher URL: http://journals.plos.org/plosone/article
DOI: 10.1371/journal.pone.0177939
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.