5 years ago

The hpCADD NDDO Hamiltonian: Parametrization

The hpCADD NDDO Hamiltonian: Parametrization
Heike B. Thomas, Franziska Hoffgaard, Patrick Kibies, Timothy Clark, Stefan Güssregen, Gerhard Hessler, Stefan M. Kast, Matthias Hennemann
A neglect of diatomic differential overlap (NDDO) Hamiltonian has been parametrized as an electronic component of a polarizable force field. Coulomb and exchange potentials derived directly from the NDDO Hamiltonian in principle can be used with classical potentials, thus forming the basis for a new generation of efficiently applicable multipolar polarizable force fields. The new hpCADD Hamiltonian uses force-field-like atom types and reproduces the electrostatic properties (dipole moment, molecular electrostatic potential) and Koopmans’ theorem ionization potentials closely, as demonstrated for a large training set and an independent test set of small molecules. The Hamiltonian is not intended to reproduce geometries or total energies well, as these will be controlled by the classical force-field potentials. In order to establish the hpCADD Hamiltonian as an electronic component in force-field-based calculations, we tested its performance in combination with the 3D reference interaction site model (3D RISM) for aqueous solutions. Comparison of the resulting solvation free energies for the training and test sets to atomic charges derived from standard procedures, exact solute–solvent electrostatics based on high-level quantum-chemical reference data, and established semiempirical Hamiltonians demonstrates the advantages of the hpCADD parametrization.

Publisher URL: http://dx.doi.org/10.1021/acs.jcim.7b00080

DOI: 10.1021/acs.jcim.7b00080

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.