5 years ago

Low-Pressure Hydrogenation of CO2 to CH3OH Using Ni-In-Al/SiO2 Catalyst Synthesized via a Phyllosilicate Precursor

Low-Pressure Hydrogenation of CO2 to CH3OH Using Ni-In-Al/SiO2 Catalyst Synthesized via a Phyllosilicate Precursor
Maohong Fan, Anthony R. Richard
The overall objective of this research is to convert the increasingly concerning CO2 and renewable H2 to highly demanded methanol (CH3OH), which creates a win–win scenario for simultaneous climate change prevention and sustainable economic development. The key to the success of this targeted CO2 utilization technology is the development of low-pressure methanol synthesis catalysts (NiaInbAl/SiO2; a = 0–8.3, b = 0–9.1) by means of a phyllosilicate precursor, allowing for formation of well-dispersed metallic particles with an average diameter of 2.5–3.5 nm. The catalysts were characterized with various methods including ICP-OES, N2 physisorption, XRD, SEM, TEM, TGA, H2 TPR, DRIFTS, and XPS. The performances of the NiaInbAl/SiO2 catalysts and conventional catalyst were compared under various evaluation temperatures at ambient pressure. It was found that catalysts with Ni/In ratios of 0.4–0.7 showed the highest activity. Ni3.5In5.3Al/SiO2 (NIA-0.7) with 15% metal loading was the best among the tested NiaInbAl/SiO2 catalysts with an activity of 0.33 mol h–1 (mol catalyst metal)−1 in comparison to the benchmark Cu/ZnO/Al2O3 (CZA) catalyst at 0.17. Several NiaInbAl/SiO2 catalysts also showed similar CO2 conversions in comparison to the CZA catalyst. Infrared studies using DRIFTS determined that CO2 hydrogenation on NiaInbAl/SiO2 catalysts proceeds through monodentate carbonate before further conversion to monodentate and bidentate formate. With a feed of CO/H2 instead of CO2/H2 the primary hydrocarbon product changes from methanol to propane, accompanied by a lack of formate and monodentate carbonate IR signals.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b00848

DOI: 10.1021/acscatal.7b00848

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.