5 years ago

Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets

Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets
Jan Palczewski, Anna Palczewska, Richard L. Marchese Robinson, Nathan Kidley
The ability to interpret the predictions made by quantitative structure–activity relationships (QSARs) offers a number of advantages. While QSARs built using nonlinear modeling approaches, such as the popular Random Forest algorithm, might sometimes be more predictive than those built using linear modeling approaches, their predictions have been perceived as difficult to interpret. However, a growing number of approaches have been proposed for interpreting nonlinear QSAR models in general and Random Forest in particular. In the current work, we compare the performance of Random Forest to those of two widely used linear modeling approaches: linear Support Vector Machines (SVMs) (or Support Vector Regression (SVR)) and partial least-squares (PLS). We compare their performance in terms of their predictivity as well as the chemical interpretability of the predictions using novel scoring schemes for assessing heat map images of substructural contributions. We critically assess different approaches for interpreting Random Forest models as well as for obtaining predictions from the forest. We assess the models on a large number of widely employed public-domain benchmark data sets corresponding to regression and binary classification problems of relevance to hit identification and toxicology. We conclude that Random Forest typically yields comparable or possibly better predictive performance than the linear modeling approaches and that its predictions may also be interpreted in a chemically and biologically meaningful way. In contrast to earlier work looking at interpretation of nonlinear QSAR models, we directly compare two methodologically distinct approaches for interpreting Random Forest models. The approaches for interpreting Random Forest assessed in our article were implemented using open-source programs that we have made available to the community. These programs are the rfFC package (https://r-forge.r-project.org/R/?group_id=1725) for the R statistical programming language and the Python program HeatMapWrapper [https://doi.org/10.5281/zenodo.495163] for heat map generation.

Publisher URL: http://dx.doi.org/10.1021/acs.jcim.6b00753

DOI: 10.1021/acs.jcim.6b00753

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.