3 years ago

Evidence for a 1,3-Dipolar Cyclo-addition Mechanism in the Decarboxylation of Phenylacrylic Acids Catalyzed by Ferulic Acid Decarboxylase

Evidence for a 1,3-Dipolar Cyclo-addition Mechanism in the Decarboxylation of Phenylacrylic Acids Catalyzed by Ferulic Acid Decarboxylase
Kyle L. Ferguson, Joseph D. Eschweiler, E. Neil G. Marsh, Brandon T. Ruotolo
Ferulic acid decarboxylase catalyzes the decarboxylation of phenylacrylic acid using a newly identified cofactor, prenylated flavin mononucleotide (prFMN). The proposed mechanism involves the formation of a putative pentacyclic intermediate formed by a 1,3 dipolar cyclo-addition of prFMN with the α–β double bond of the substrate, which serves to activate the substrate toward decarboxylation. However, enzyme-catalyzed 1,3 dipolar cyclo-additions are unprecedented and other mechanisms are plausible. Here we describe the use of a mechanism-based inhibitor, 2-fluoro-2-nitrovinylbenzene, to trap the putative cyclo-addition intermediate, thereby demonstrating that prFMN can function as a dipole in a 1,3 dipolar cyclo-addition reaction as the initial step in a novel type of enzymatic reaction.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b05060

DOI: 10.1021/jacs.7b05060

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.