5 years ago

Novel Strategy Utilizing Extracellular Cysteine-Rich Domain of Membrane Receptor for Constructing d-Peptide Mediated Targeted Drug Delivery Systems: A Case Study on Fn14

Novel Strategy Utilizing Extracellular Cysteine-Rich Domain of Membrane Receptor for Constructing d-Peptide Mediated Targeted Drug Delivery Systems: A Case Study on Fn14
Jie Shen, Ying Wang, Shan Peng, Zhuoxuan Li, Chong Li, Weiyue Lu, Sha Liu, Jing Xie
The development of proteolysis-resistant d-peptide ligands for targeted drug/gene delivery has been greatly limited, due to the challenge that lies in the chemical synthesis of membrane receptors without altering their structures. In the present research, a novel strategy utilizing self-stabilized extracellular CRD of the membrane receptor was developed to construct d-peptide ligands and their mediated targeted drug delivery systems. Fn14, a cell surface receptor overexpressed in many cancers including pancreatic and triple-negative breast cancers, was selected as the model receptor. Fn14 CRD was synthesized and folded, and used to screen Fn14 binding peptides using phage display (l-peptide) and mirror-image phage display (d-peptide) techniques, respectively. The d-peptide ligand successfully mediated targeted drug delivery to Fn14 positive tumor cells. In addition, the d-peptide possessed better target-binding affinity, stromal barrier permeability, and tumor targeting ability in vivo when conjugated with liposomes. More importantly, d-peptide mediated liposomal paclitaxel delivery significantly inhibited pancreatic tumor growth in a subcutaneous xenograft model and drastically prolonged survival in a lung metastasis of breast cancer mouse model. This study demonstrated that mirror-image phage display based on the CRD of membrane receptor can be a promising strategy to advance active targeted drug delivery via biostable d-peptides.

Publisher URL: http://dx.doi.org/10.1021/acs.bioconjchem.7b00326

DOI: 10.1021/acs.bioconjchem.7b00326

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.