3 years ago

Singlet Fission within Diketopyrrolopyrrole Nanoparticles in Water

Singlet Fission within Diketopyrrolopyrrole Nanoparticles in Water
Michael R. Wasielewski, Claire E. Miller, Patrick E. Hartnett, Catherine M. Mauck, Yi-Lin Wu, Tobin J. Marks
Nanoparticles (NPs) of the singlet fission chromophore 3,6-bis(5-phenylthiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (PhTDPP) having average hydrodynamic diameters of 63–193 nm were prepared by rapidly injecting variable concentrations of PhTDPP solutions in tetrahydrofuran into water. These PhTDPP NPs are stable over months in water and exhibit fluorescence quantum yields ≪1%. Femtosecond transient absorption spectroscopy shows that singlet fission is more rapid in smaller NPs, likely reflecting their greater surface area-to-volume ratio and consequent exposure of more molecules to the high dielectric aqueous environment. These observations suggest that charge transfer states, whose energy is sensitive to the dielectric constant of the surrounding medium, serve as virtual intermediates in PhTDPP NP singlet fission. However, the lifetime of the triplet excitons produced by singlet fission is longest in the larger NPs having greater long-range order, which allows the triplet excitons to diffuse further from one another thus slowing triplet–triplet annihilation.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b01845

DOI: 10.1021/acs.chemmater.7b01845

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.