3 years ago

MicroRNA Intercellular Transfer and Bioelectrical Regulation of Model Multicellular Ensembles by the Gap Junction Connectivity

MicroRNA Intercellular Transfer and Bioelectrical Regulation of Model Multicellular Ensembles by the Gap Junction Connectivity
Salvador Meseguer, Salvador Mafe, Javier Cervera
We have studied theoretically the microRNA (miRNA) intercellular transfer through voltage-gated gap junctions in terms of a biophysically grounded system of coupled differential equations. Instead of modeling a specific system, we use a general approach describing the interplay between the genetic mechanisms and the single-cell electric potentials. The dynamics of the multicellular ensemble are simulated under different conditions including spatially inhomogeneous transcription rates and local intercellular transfer of miRNAs. These processes result in spatiotemporal changes of miRNA, mRNA, and ion channel protein concentrations that eventually modify the bioelectrical states of small multicellular domains because of the ensemble average nature of the electrical potential. The simulations allow a qualitative understanding of the context-dependent nature of the effects observed when specific signaling molecules are transferred through gap junctions. The results suggest that an efficient miRNA intercellular transfer could permit the spatiotemporal control of small cellular domains by the conversion of single-cell genetic and bioelectric states into multicellular states regulated by the gap junction interconnectivity.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b04774

DOI: 10.1021/acs.jpcb.7b04774

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.