5 years ago

Defect-Induced Wetting Behavior on Solid Polar Surfaces with Small Charge Dipole Length

Defect-Induced Wetting Behavior on Solid Polar Surfaces with Small Charge Dipole Length
Yousheng Xu, Yifei Qiu, Chunlei Wang, Yusong Tu, Yang Liu
Previous work showed that solid polar surfaces with a very small dipole length still might be quite hydrophobic even with large values of charge. Using molecular dynamics simulations, we have found that the presence of the point defects on a solid polar surface greatly influences the wetting behavior of water, even at a very low defect ratio of 1%. As the defect ratio increases, the coverage of the water layer over the solid surface also increases. Because of the breakdown of steric exclusion, the water molecules strongly bind to the solid surface mainly through electrostatic interactions between their hydrogen atoms and the negative charges near the positive-vacancy defects on the surface, or between their oxygen atoms and the positive charges near the negative-vacancy defects.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b05476

DOI: 10.1021/acs.jpcc.7b05476

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.