4 years ago

All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance

All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance
Yasumichi Matsumoto, Michio Koinuma, Takaaki Taniguchi, Ruriko Kurogi, Kazuto Hatakeyama, Chikako Ogata, Keisuke Awaya
The rapid development of flexible and wearable electronics has led to an increase in the demand for flexible supercapacitors with enhanced electrochemical performance. Graphene oxide (GO) and reduced GO (rGO) exhibit several key properties required for supercapacitor components. Although solid-state rGO/GO/rGO supercapacitors with unique structures are promising, their moderate capacitance is inadequate for practical applications. Herein, we report a flexible solid-state rGO/GO/rGO supercapacitor comprising H2SO4-intercalated GO electrolyte/separator and pseudocapacitive rGO electrodes, which demonstrate excellent electrochemical performance. The resulting supercapacitor delivered an areal capacitance of 14.5 mF cm–2, which is among the highest values achieved for any rGO/GO/rGO supercapacitor. High ionic concentration and fast ion conduction in the H2SO4-intercalated GO electrolyte/separator and abundant CH defects, which serve as pseudocapacitive sites on the rGO electrode, were responsible for the high capacitance of this device. The rGO electrode, well separated by the H2SO4 molecular spacer, supplied highly efficient ion transport channels, leading to excellent rate capability. The highly packed rGO electrode and high specific capacitance resulted in a high volumetric energy density (1.24 mWh cm–3) observed in this supercapacitor. The structure, without a clear interface between GO and rGO, provides extremely low resistance and flexibility for devices. Our device operated in air (25 °C 40%) without the use of external electrolytes, conductive additives, and binders. Furthermore, we demonstrate a simple and versatile technique for supercapacitor fabrication by combining photoreduction and electrochemical treatment. These advantages are attractive for developing novel carbon-based energy devices with high device performance and low fabrication costs.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b04180

DOI: 10.1021/acsami.7b04180

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.