3 years ago

d-Retroenantiomer of Quorum-Sensing Peptide-Modified Polymeric Micelles for Brain Tumor-Targeted Drug Delivery

d-Retroenantiomer of Quorum-Sensing Peptide-Modified Polymeric Micelles for Brain Tumor-Targeted Drug Delivery
Jianfen Zhou, Wan-Liang Lu, Danni Ran, Huitong Ruan, Jiani Mao, Man Ying, Changyou Zhan, Cao Xie, Weiyue Lu
Compared to that of other tumors, various barriers, such as the blood–brain barrier (BBB), enzymatic barriers, and the blood–brain tumor barrier, severely impede the successful treatment of gliomas. Peptide ligands were frequently used as targeting moieties to mediate brain tumor-targeted drug delivery. LWSW (SYPGWSW) is a recently reported quorum-sensing (QS) peptide that is able to efficiently cross the BBB. Even though linear LWSW traverses the BBB in vitro, its in vivo targeting ability has been greatly impaired due to proteolysis. Here, we developed a stable peptide, DWSW (DWDSDWDGDPDYDS), using the retro-inverso isomerization technique to achieve an enhanced antiglioma effect. In vitro studies have demonstrated that both the LWSW and DWSW peptides possessed excellent tumor-homing properties and barrier-penetration abilities, whereas DWSW exhibited exceptional stability in serum and maintained its targeting ability after serum preincubation. In vivo, DWSW-modified probes and micelles accumulated more efficiently in the glioma region in comparison with LWSW-modified probes and micelles because of full resistance to proteolysis in blood circulation. As expected, DWSW-modified paclitaxel (PTX)-loaded micelles (DWSW Micelle/PTX) exhibited the longest median survival time among glioma-bearing nude mice. Our results suggested that the QS peptide appears to be a promising targeting moiety, with potential applications in glioma-targeted drug delivery.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b03518

DOI: 10.1021/acsami.7b03518

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.