5 years ago

Harnessing Hot Electrons from Near IR Light for Hydrogen Production Using Pt-End-Capped-AuNRs

Harnessing Hot Electrons from Near IR Light for Hydrogen Production Using Pt-End-Capped-AuNRs
Tao Wang, Brandon Zoellner, Yang Liu, Soung Joung Hong, Nathalia Ortiz, Gufeng Wang, Paul A. Maggard, Yue Ji
Gold nanorods show great potential in harvesting natural sunlight and generating hot charge carriers that can be employed to produce electrical or chemical energies. We show that photochemical reduction of Pt(IV) to Pt metal mainly takes place at the ends of gold nanorods (AuNRs), suggesting photon-induced hot electrons are localized in a time-averaged manner at AuNR ends. To use these hot electrons efficiently, a novel synthetic method to selectively overgrow Pt at the ends of AuNRs has been developed. These Pt-end-capped AuNRs show relatively high activity for the production of hydrogen gas using artificial white light, natural sunlight, and more importantly, near IR light at 976 nm. Tuning of the surface plasmon resonance (SPR) wavelength of AuNRs changes the hydrogen gas production rate, indicating that SPR is involved in hot electron generation and photoreduction of hydrogen ions. This study shows that gold nanorods are excellent for converting low-energy photons into high-energy hot electrons, which can be used to drive chemical reactions at their surfaces.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05064

DOI: 10.1021/acsami.7b05064

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.