4 years ago

Development of Epigallocatechin-3-gallate-Encapsulated Nanohydroxyapatite/Mesoporous Silica for Therapeutic Management of Dentin Surface

Development of Epigallocatechin-3-gallate-Encapsulated Nanohydroxyapatite/Mesoporous Silica for Therapeutic Management of Dentin Surface
Hongye Yang, Cui Huang, Jinmei Lei, Jian Yu, Hongyu Ren, Kang Li
In dental clinic, unsatisfactory management of the dentin surface after dentin exposure often leads to the occurrence of dentin hypersensitivity and caries. Current approaches can occlude the tubules on the dentin surface to relieve dentin hypersensitivity; however, the blocked tubules are generally weak in combating daily tooth erosion and abrasion. Moreover, cariogenic bacteria, such as Streptococcus mutans, produce biofilm on the dentin surface, causing caries and compromising the tubules’ sealing efficacy. To overcome this problem, the present study focused on establishing a versatile biomaterial, epigallocatechin-3-gallate-encapsulated nanohydroxyapatite/mesoporous silica nanoparticle (EGCG@nHAp@MSN), for therapeutic management of the dentin surface. The effectiveness of the biomaterial on dentinal tubule occlusion, including resistances against acid and abrasion, was evaluated by field-emission scanning electron microscopy (FESEM) and dentin permeability measurement. The inhibitory capability of the biomaterial on S. mutans biofilm formation was investigated by confocal laser scanning microscopy (CLSM), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony forming units (CFU) counts, and FESEM. Results demonstrated for the first time that the use of EGCG@nHAp@MSN on the dentin surface was capable of effectively occluding dentinal tubules, reducing dentin permeability, and achieving favorable acid- and abrasion-resistant stability. Furthermore, EGCG@nHAp@MSN held the capability to continuously release EGCG, Ca, and P, and significantly inhibit the formation and growth of S. mutans biofilm on the dentin surface. Thus, the development of EGCG@nHAp@MSN bridges the gap between multifunctional concept and dental clinical practice and is promising in providing dentists a therapeutic strategy for the management of the dentin surface to counter dentin hypersensitivity and caries.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06597

DOI: 10.1021/acsami.7b06597

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.