4 years ago

In Situ Formation of Microfibrillar Crystalline Superstructure: Achieving High-Performance Polylactide

In Situ Formation of Microfibrillar Crystalline Superstructure: Achieving High-Performance Polylactide
Xi Zhang, Chunhai Li, Jiabin Shen, Hong Wu, Ying Xiong, Rong Chen, Jiang Li, Shaoyun Guo, Ting Jiang, Jianfeng Wang
As a biobased and biodegradable polyester, polylactide (PLA) is widely applied in disposable products, biomedical devices, and textiles. Nevertheless, due to its inherent brittleness and inferior strength, simultaneously reinforcing and toughening of PLA without sacrificing its biodegradability is highly desirable. In this work, a robust assembly consisting of compact and well-ordered microfibrillar crystalline superstructure (FCS) surrounded by slightly oriented amorphism, is achieved by a combined external force field. Unlike the classic crystalline superstructures such as shish-kebabs, cylindrites, and lamellae, the newfound FCS with diameter of about 100 nm and length of several tens of micrometers is aggregated with well-aligned crystalline nanofibers. FCS can serve as discontinuous fiber to self-reinforce the amorphous PLA; more importantly, FCS can also act as rivets to pin the propagating fibrillar crazes leading to the formation of dense fibrillar crazes during stretching, which dissipates much energy and translates the failure of PLA from brittle to ductile. Consequently, PLA with FCS exhibits exceptionally simultaneous enhancement in ductility, strength, and stiffness, outperforming normal PLA with increments of 728, 55, and 70% in elongation at break, strength, and modulus, respectively. Therefore, FSC exhibits competitive advantages in achieving high-performance PLA even for other semicrystalline polymers. More significantly, this newfound crystalline superstructure (FCS) provides a new structural model to establish the correlation between structure and performance.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06705

DOI: 10.1021/acsami.7b06705

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.