3 years ago

Rational Design of S-UiO-66@GO Hybrid Nanosheets for Proton Exchange Membranes with Significantly Enhanced Transport Performance

Rational Design of S-UiO-66@GO Hybrid Nanosheets for Proton Exchange Membranes with Significantly Enhanced Transport Performance
Beibei Tang, Huazhen Sun, Peiyi Wu
Metal–organic frameworks (MOFs) are being intensively explored as filler materials for polymeric proton exchange membranes (PEMs) due to their potentials for the systematic design and modification of proton-conducting properties. S-UiO-66, a stable MOF with functional groups of −SO3H in its ligands, was selected here to prepare S-UiO-66@graphene oxide (GO) hybrid nanosheets via a facile in situ growth procedure, and then a series of composite PEMs were prepared by hybridizing S-UiO-66@GO and sulfonated poly(ether ether ketone) (SPEEK). The resultant hybrid nanosheets not only possessed abundant −SO3H groups derived from the ligands of S-UiO-66 but also yielded a uniform dispersion of S-UiO-66 onto GO nanosheets, thus effectively eliminating the agglomeration of S-UiO-66 in the membrane matrix. Thanks to the well-tailored chemical composition and nanostructure of S-UiO-66@GO, the as-prepared SPEEK/S-UiO-66@GO composite PEMs present a significant increase in their proton conductivity under various conditions. In particular, the proton conductivity of the SPEEK/S-UiO-66@GO-10 membrane was up to 0.268 S·cm–1 and 16.57 mS·cm–1 at 70 °C-95% RH and 100 °C-40% RH (2.6 and 6.0 times that of recast SPEEK under the same condition), respectively. Moreover, the mechanical property of composite membranes was substantially strengthened and the methanol penetration was well-suppressed. Our investigation indicates the great potential of S-UiO-66@GO in fabricating composite PEMs and also reveals that the high proton conductivity of MOFs can be fully utilized by means of MOF/polymer composite membranes.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07651

DOI: 10.1021/acsami.7b07651

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.