4 years ago

Functional Organophosphonate Interfaces for Nanotechnology: A Review

Functional Organophosphonate Interfaces for Nanotechnology: A Review
Anna Cattani-Scholz
Optimization of interfaces in inorganic–organic device systems depends strongly on understanding both the molecular processes that are involved in surface modification and the effects that such modifications have on the electronic states of the material. In particular, the last several years have seen passivation and functionalization of semiconductor surfaces to be strategies by which to realize devices with superior function by controlling Fermi level energies, band-gap magnitudes, and work functions of semiconducting substrates. Among all of the synthetic routes and deposition methods available for the optimization of functional interfaces in hybrid systems, organophosphonate chemistry has been found to be a powerful tool to control at the molecular level the properties of materials in many different applications. In this Review, we focus on the relevance of organophosphonate chemistry in nanotechnology, giving an overview about some recent advances in surface modification, interface engineering, nanostructure optimization, and biointegration.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b04382

DOI: 10.1021/acsami.7b04382

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.