3 years ago

Doxorubicin Intracellular Remote Release from Biocompatible Oligo(ethylene glycol) Methyl Ether Methacrylate-Based Magnetic Nanogels Triggered by Magnetic Hyperthermia

Doxorubicin Intracellular Remote Release from Biocompatible Oligo(ethylene glycol) Methyl Ether Methacrylate-Based Magnetic Nanogels Triggered by Magnetic Hyperthermia
Jean-Michel Guigner, Claire Wilhelm, Aude Michel, Esther Cazares-Cortes, Nébéwia Griffete, Christine Ménager, Ana Espinosa
Hybrid nanogels, composed of thermoresponsive polymers and superparamagnetic nanoparticles, are attractive nanocarriers for biomedical applications, being able—as a polymer matrix—to uptake and release high quantities of chemotherapeutic agents and—as magnetic nanoparticles—to be heated when exposed to an alternative magnetic field (AMF), better known as magnetic hyperthermia. Herein, biocompatible, pH-responsive, magnetoresponsive, and thermoresponsive nanogels, based on oligo(ethylene glycol) methyl ether methacrylate monomers and a methacrylic acid comonomer were prepared by conventional precipitation radical copolymerization in water, post-assembled by complexation with iron oxide magnetic nanoparticles (MNPs) of maghemite (γ-Fe2O3), and loaded with an anticancer drug (doxorubicin, DOX), for remotely controlled drug release by a “hot spot”, as an athermal magnetic hyperthermia strategy against cancer. These nanogels, denoted MagNanoGels, with a hydrodynamic diameter from 328 to 460 nm, as a function of the MNP content, have a swelling–deswelling behavior at their volume phase temperature transition around 47 °C in a physiological medium (pH 7.5), which is above the human body temperature (37 °C). Applying an alternative magnetic field increases the release of DOX by 2-fold, while no macroscopic heating was recorded. This enhanced drug release is due to a shrinking of the polymer network by local heating, as illustrated by the MagNanoGel size decrease under an AMF. In cancer cells, not only do the DOX–MagNanoGels internalize DOX more efficiently than free DOX, but also DOX intracellular release can be remotely triggered under an AMF, in athermal conditions, thus enhancing DOX cytotoxicity.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06553

DOI: 10.1021/acsami.7b06553

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.