5 years ago

Contact Effect of ReS2/Metal Interface

Contact Effect of ReS2/Metal Interface
Seong Chan Jun, Jae Young Park, Hyong Seo Yoon, Taekyeong Kim, Hang-Eun Joe, SangHyuk Yoo, Byung-Kwon Min, Keonwook Kang
Rhenium disulfide (ReS2) has attracted immense interest as a promising two-dimensional material for optoelectronic devices owing to its outstanding photonic response based on its energy band gap’s insensitivity to the layer thickness. Here, we theoretically calculated the electrical band structure of mono-, bi-, and trilayer ReS2 and experimentally found the work function to be 4.8 eV, which was shown to be independent of the layer thickness. We also evaluated the contact resistance of a ReS2 field-effect transistor using a Y-function method with various metal electrodes, including graphene. The ReS2 channel is a strong n-type semiconductor, thus a lower work function than that of metals tends to lead to a lower contact resistance. Moreover, the graphene electrodes, which were not chemically or physically bonded to ReS2, showed the lowest contact resistance, regardless of the work function, suggesting a significant Fermi-level pinning effect at the ReS2/metal interface. In addition, an asymmetric Schottky diode device was demonstrated using Ti or graphene for ohmic contacts and Pt or Pd for Schottky contacts. The ReS2-based transistor used in this study on the work function of ReS2 achieved the possibility of designing the next-generation nanologic devices.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06432

DOI: 10.1021/acsami.7b06432

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.