5 years ago

One-Transistor–One-Transistor (1T1T) Optoelectronic Nonvolatile MoS2 Memory Cell with Nondestructive Read-Out

One-Transistor–One-Transistor (1T1T) Optoelectronic Nonvolatile MoS2 Memory Cell with Nondestructive Read-Out
Dain Lee, Seongchan Kim, Jeong Ho Cho, Yeontae Kim
Taking advantage of the superlative optoelectronic properties of single-layer MoS2, we developed a one-transistor–one-transistor (1T1T)-type MoS2 optoelectronic nonvolatile memory cell. The 1T1T memory cell consisted of a control transistor (CT) and a memory transistor (MT), in which the drain electrode of the MT was connected electrically to the gate electrode of the CT, whereas the source electrode of the CT was connected electrically to the gate electrode of the MT. Single-layer MoS2 films were utilized as the channel materials in both transistors, and gold nanoparticles acted as the floating gates in the MT. This 1T1T device architecture allowed for a nondestructive read-out operation in the memory because the writing (programming or erasing) and read-out processes were operated separately. The switching of the CT could be controlled by light illumination as well as the applied gate voltage due to the strong light absorption induced by the direct band gap of single-layer MoS2 (∼1.8 eV). The resulting MoS2 1T1T memory cell exhibited excellent memory performance, including a large programming/erasing current ratio (over 106), multilevel data storage (over 6 levels), cyclic endurance (200 cycles), and stable retention (103 s).

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07077

DOI: 10.1021/acsami.7b07077

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.