3 years ago

Mesoporous SnO2 Nanotubes via Electrospinning–Etching Route: Highly Sensitive and Selective Detection of H2S Molecule

Mesoporous SnO2 Nanotubes via Electrospinning–Etching Route: Highly Sensitive and Selective Detection of H2S Molecule
Il-Doo Kim, Nam-Hoon Kim, Hee-Jin Cho, Peresi Majura Bulemo
We report the facile synthesis of thin-walled SnO2 nanotubes (NTs) with numerous clustered pores (pore radius 6.56 nm) and high surface area (125.63 m2/g) via selective etching of core (SiO2) region in SiO2–SnO2 composite nanofibers (NFs), in which SnO2 phase preferentially occupies the shell while SiO2 is concentrated in the center of the composite NFs. The SiO2-etched SnO2 NTs are composed of ultrasmall crystallites (∼6 nm in size) originating from crystal growth inhibition by small SiO2 domains, which are partially segregated in the polycrystalline SnO2 shell during calcination. These features account for efficacious diffusion and innumerable active sites, which maximize interaction between background gas (air) and analyte gas (H2S). Evaluation of gas-sensing performance of the porous SnO2 NTs before and after decorating the exterior and interior walls with Pt nanoparticles (NPs) reveals exceptional selectivity and superior response (Ra/Rg) of 154.8 and 89.3 to 5 and 1 ppm of H2S, respectively. Excellent gas-sensing characteristics are attributed to the porous topography, nanosized crystallites, high surface area, and the catalytic activity of Pt/PtOx NPs.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05241

DOI: 10.1021/acsami.7b05241

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.