3 years ago

Free-Energy-Driven Lock/Open Assembly-Based Optical DNA Sensor for Cancer-Related microRNA Detection with a Shortened Time-to-Result

Free-Energy-Driven Lock/Open Assembly-Based Optical DNA Sensor for Cancer-Related microRNA Detection with a Shortened Time-to-Result
Xiyu Zhu, Xiaohong Zhou, Ruoyu Wang, Hanchang Shi
Quantification of cancer biomarker microRNAs (miRs) by exquisitely designed biosensors with a short time-to-result is of great clinical significance. With immobilized capture probes (CPs) and fluorescent-labeled signal probes (SPs), surface-involved sandwich-type (SST) biosensors serve as powerful tools for rapid, highly sensitive, and selective detection of miR in complex matrices as opposed to the conventional techniques. One key challenge for such SST biosensors is the existence of false-negative signals when the amount of miRs exceeds SPs in solution phase for a surface with a limited number of CP. To meet this challenge, a dynamic lock/open DNA assembly was designed to rationally program the pathway for miR/SP hybrids. Based on secondary structure analysis and free-energy assessment, a “locker” strand that partially hybridizes with target miR by two separated short arms was designed to stabilize target miR, preventing possible false-negative signals. The strategy was demonstrated on a fiber-based fluorescent DNA-sensing platform. CP/miR/SP sandwiches formed on the fiber surface would generate fluorescent signals for quantitative analysis. The developed SST biosensor was able to detect miR Hsa let-7a with a detection limit of 24 pM. The applicability of this free-energy-driven lock/open assembly-based optical DNA sensor was further confirmed with spiked human urine and serum samples.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06579

DOI: 10.1021/acsami.7b06579

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.