5 years ago

Modeling Mechanochemical Reaction Mechanisms

Modeling Mechanochemical Reaction Mechanisms
Wilfred T. Tysoe, Yufu Xu, Antonella Rossi, Brendan P. Miller, Marzia Fantauzzi, Heather Adams, Peter V. Kotvis, Octavio J. Furlong, Gabriele Navarra
The mechanochemical reaction between copper and dimethyl disulfide is studied under well-controlled conditions in ultrahigh vacuum (UHV). Reaction is initiated by fast S–S bond scission to form adsorbed methyl thiolate species, and the reaction kinetics are reproduced by two subsequent elementary mechanochemical reaction steps, namely a mechanochemical decomposition of methyl thiolate to deposit sulfur on the surface and evolve small, gas-phase hydrocarbons, and sliding-induced oxidation of the copper by sulfur that regenerates vacant reaction sites. The steady-state reaction kinetics are monitored in situ from the variation in the friction force as the reaction proceeds and modeled using the elementary-step reaction rate constants found for monolayer adsorbates. The analysis yields excellent agreement between the experiment and the kinetic model, as well as correctly predicting the total amount of subsurface sulfur in the film measured using Auger spectroscopy and the sulfur depth distribution measured by angle-resolved X-ray photoelectron spectroscopy.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05440

DOI: 10.1021/acsami.7b05440

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.