5 years ago

Effects of fullerene on lipid bilayers displaying different liquid ordering: a coarse-grained molecular dynamics study

Effects of fullerene on lipid bilayers displaying different liquid ordering: a coarse-grained molecular dynamics study
The toxic effects and environmental impact of nanomaterials, and in particular of Fullerene particles, are matters of serious concern. It has been reported that fullerene molecules enter the cell membrane and occupy its hydrophobic region. Understanding the effects of Carbon-based nanoparticles on biological membranes is therefore of critical importance to determine their exposure risks. Methods We report on a systematic coarse-grained molecular dynamics study of the interaction of fullerene molecules with simple model cell membranes. We have analyzed bilayers consisting of lipid species with different degrees of unsaturation and a variety of cholesterol fractions. Addition of fullerene particles to phase-segregated ternary membranes is also investigated in the context of the lipid raft model for the organization of the cell membrane. Results Fullerene addition to lipid membranes modifies their structural properties like thickness, area and internal ordering of the lipid species, as well as dynamical aspects such as molecular diffusion and cholesterol flip-flop. Interestingly, we show that phase-segregating ternary lipid membranes accumulate fullerene molecules preferentially in the liquid-disordered domains promoting phase-segregation and domain alignment across the membrane. Conclusions Lipid membrane internal ordering determines the behavior and distribution of fullerene particle, and this, in turn, determines the influence of fullerene on the membrane. Lipid membranes are good solvents of fullerene molecules, and in particular those with low internal ordering. General Significance Preference of fullerene molecules to be dissolved in the more disordered hydrophobic regions of a lipid bilayer and the consequent alteration of its phase behavior may have important consequences on the activity of biological cell membranes and on the bioconcentration of fullerene in living organisms.

Publisher URL: www.sciencedirect.com/science

DOI: S0304416517302490

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.