3 years ago

Fusion of Structure and Ligand Based Methods for Identification of Novel CDK2 Inhibitors

Fusion of Structure and Ligand Based Methods for Identification of Novel CDK2 Inhibitors
Parvinder Pal Singh, Amit Kumar, Priya Mahajan, Gousia Chashoo, Amit Nargotra, Monika Gupta
Cyclin dependent kinases play a central role in cell cycle regulation which makes them a promising target with multifarious therapeutic potential. CDK2 regulates various events of the eukaryotic cell division cycle, and the pharmacological evidence indicates that overexpression of CDK2 causes abnormal cell-cycle regulation, which is directly associated with hyperproliferation of cancer cells. Therefore, CDK2 is regarded as a potential target molecule for anticancer medication. Thus, to decline CDK2 activity by potential lead compounds has proved to be an effective treatment for cancer. The availability of a large number of X-ray crystal structures and known inhibitors of CDK2 provides a gateway to perform efficient computational studies on this target. With the aim to identify new chemical entities from commercial libraries, with increased inhibitory potency for CDK2, ligand and structure based computational drug designing approaches were applied. A druglike library of 50,000 compounds from ChemDiv and ChemBridge databases was screened against CDK2, and 110 compounds were identified using the parallel application of these models. On in vitro evaluation of 40 compounds, seven compounds were found to have more than 50% inhibition at 10 μM. MD studies of the hits revealed the stability of these inhibitors and pivotal role of Glu81 and Leu83 for binding with CDK2. The overall study resulted in the identification of four new chemical entities possessing CDK2 inhibitory activity.

Publisher URL: http://dx.doi.org/10.1021/acs.jcim.7b00293

DOI: 10.1021/acs.jcim.7b00293

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.