3 years ago

Ultrastretchable, Self-Healable Hydrogels Based on Dynamic Covalent Bonding and Triblock Copolymer Micellization

Ultrastretchable, Self-Healable Hydrogels Based on Dynamic Covalent Bonding and Triblock Copolymer Micellization
Guohua Deng, Peng Wang, Lanying Zhou, Zhiyong Li, Yongming Chen
Excellent mechanical properties and remarkable self-healing ability are difficult to unify in one hydrogel. We integrated acylhydrazone bonds and Pluronic F127 (PF127) micelle cross-linking, as two kinds of dynamic cross-links, in one system and developed hydrogels with superior stretchability, high toughness, and good self-healing ability. The hydrogel could stretch up to 117 times its initial length and self-heal approximately 85% of its initial strength within 24 h. The toughness of the hydrogel, indexed by the work of extension, W, reached 14.1 MJ m–3. Energy dissipation occurred from the simultaneous decomposition of the PF127 micelles and chain sliding facilitated by the reconfiguration of the acylhydrazone bonds. This unique combination and dynamics led to pronounced hysteresis in the loading–unloading cycles, as well as good recovery and self-healing of the hydrogel. Dynamic cross-linking of the covalent acylhydrazone bonds was comparable to those of physical interactions, such as coordination and ionic bonding.

Publisher URL: http://dx.doi.org/10.1021/acsmacrolett.7b00519

DOI: 10.1021/acsmacrolett.7b00519

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.