3 years ago

Microbial-Phosphorus-Enabled Synthesis of Phosphide Nanocomposites for Efficient Electrocatalysts

Microbial-Phosphorus-Enabled Synthesis of Phosphide Nanocomposites for Efficient Electrocatalysts
De-Shan Bin, Xiao-Chan Liu, Tian-Qi Zhang, Jin-Song Hu, An-Min Cao, Yong-Gang Sun, Lin-Bo Huang, Xi Chen, Li-Jun Wan, Xu-Dong Zhang, Jian Liu
Transition-metal phosphides have recently been identified as low-cost and efficient electrocatalysts that are highly active for the hydrogen evolution reaction. Unfortunately, to achieve a controlled phosphidation of nonprecious metals toward a desired nanostructure of metal phosphides, the synthetic processes usually turned complicated, high-cost, and even dangerous due to the reaction chemistry related to different phosphorus sources. It becomes even more challenging when considering the integration of those active metal phosphides with the structural engineering of their conductive matrix toward a favorable architecture for optimized catalytic performance. Herein, we identified that the biomass itself could act as an effective synthetic platform for the construction of supported metal phosphides by recovering its inner phosphorus upon reacting with transition-metals ions, forming well-dispersed, highly active nanoparticles of metal phosphides incorporated in the nanoporous carbon matrix, which promised high catalytic activity in the hydrogen evolution reaction. Our synthetic protocol not only provides a simple and effective strategy for the construction of a large variety of highly active nanoparticles of metal phosphides but also envisions new perspectives on an integrated utilization of the essential ingredients, particularly phosphorus, together with the innate architecture of the existing biomass for the creation of functional nanomaterials toward sustainable energy development.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b06123

DOI: 10.1021/jacs.7b06123

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.