5 years ago

Gated Water Transport through Graphene Nanochannels: From Ionic Coulomb Blockade to Electroosmotic Pump

Gated Water Transport through Graphene Nanochannels: From Ionic Coulomb Blockade to Electroosmotic Pump
Yingnan Zhang, Wensen Wang, Wen Li, Youguo Yan, Jun Zhang, Caili Dai
Understanding and controlling water or ion transport in nanochannels plays an important role in further unravelling the transport mechanism of biological membrane channels and designing functional nanofluidic devices. Molecular dynamics simulations were conducted to investigate water and ion transport in graphene nanochannels. Similar to electron coulomb blockade phenomenon observed in quantum dots, we discovered an ionic coulomb blockade phenomenon in our graphene nanochannels, and another two ion transport modes were also proposed to rationalize the observed phenomena under different electric-field intensities. Furthermore, on the basis of this blockade phenomenon we found that the Open and Closed states of the graphene nanochannels for water transport could be switched according to external electric-field intensities, and electroosmotic flow could further enhance the water transport. These findings might have potential applications in designing and fabricating controllable valves in lab-on-chip nanodevices.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b05374

DOI: 10.1021/acs.jpcc.7b05374

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.